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1. Introduction

The comprehensive investigation of completely integrable systems has at least two rea-

sons. First, such systems serve as a testing area for developing various methods to solve

nonlinear partial differential equations. And second, they possess an interesting class of

solutions, called solitons, which have properties attractive from the point of view of possible

physical applications.

The two-dimensional loop Toda equations provide an illustrative and very rich exam-

ple of completely integrable nonlinear equations, see, for example, the monographs [1, 2].

Different methods applicable to loop Toda equations for constructing their soliton-like so-

lutions were analysed in the paper [3]. Namely, multi-soliton solutions of abelian untwisted

loop Toda equations associated with the general linear groups were explicitly constructed

by means of the Hirota’s [4 – 9] and the rational dressing [10, 11] methods, and a direct

relationship between these approaches was established.1.

In this paper we continue the investigation of abelian loop Toda equations associated

with the complex general linear groups started in the paper [3]. Here we consider abelian

twisted loop Toda equations. It is interesting that the famous Dodd-Bullough-Mikhailov

1It is worth to note that sometimes it is helpful to employ a combination of such complementary methods,

see, for example, [12, 13]
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equation is a simplest particular case of such twisted loop Toda equations. We develop

the rational dressing method in application to these classes of nonlinear equations and

construct for them new soliton solutions.

Here we start with the classification of the abelian loop Toda equations, associated

with the complex general linear groups, reducing them from the general classification of the

loop Toda systems performed in [14, 15]. In this way we find direct relationships between

different loop Toda equations and define proper places for the twisted loop Toda systems

to be subsequently solved. For the latter purpose we use the rational dressing method that

proved to be very efficient and favourable already in the untwisted case [3]. Indeed, the

method of rational dressing, consistently developed for the twisted loop Toda equations

under consideration, allows us to construct more general classes of solutions where the

Hirota solitons form a substantially smaller subset. Besides, it is an essential advantage

of the rational dressing, being actually a version of the inverse scattering method, that it

does not rely on guessing at an appropriate change of the dependent field variables as in

the Hirota’s approach.

2. Loop Toda equations

In this section, mainly following the monographs [1, 2] and our papers [14, 15], we recall

basic notions and introduce notations to be used below. We start our consideration with

a Lie group G whose Lie algebra G is endowed with a Z-gradation,

G =
⊕

k∈Z

Gk, [Gk,Gl] ⊂ Gk+l,

and denote by L such a positive integer that the grading subspaces Gk, where 0 < |k| < L,

are trivial. We denote by G0 the closed Lie subgroup of G corresponding to the zero-grade

Lie subalgebra G0. Then, the Toda equation associated with G is an equation for a mapping

Ξ of the Euclidean plane R
2 to G0, explicitly of the form

∂+(Ξ−1∂−Ξ) = [F−,Ξ
−1F+Ξ], (2.1)

where F− and F+ are some fixed mappings of R
2 to G−L and G+L, respectively, satisfying

the relations

∂+F− = 0, ∂−F+ = 0. (2.2)

Here we use the customary notation ∂− = ∂/∂z−, ∂+ = ∂/∂z+ for the partial derivatives

over the standard coordinates on R
2. Certainly, to obtain a nontrivial Toda equation we

have to assume that the subspaces G−L and G+L are nontrivial.

When the Lie group G0 is abelian, the corresponding Toda equation is said to be

abelian, otherwise we deal with a non-abelian Toda equation.

We see that a Toda equation is specified by a choice of a Z-gradation of the Lie algebra

G of G and mappings F−, F+ satisfying the conditions (2.2). Therefore, to classify the

Toda equations associated with a Lie group G we should classify Z-gradations of the Lie

algebra G of G up to isomorphisms.
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It is essential for our purposes that the Toda equation (2.1) together with the rela-

tions (2.2) are equivalent to the zero-curvature condition for a flat connection on the trivial

fiber bundle R2 × G → R2. Indeed, writing the zero-curvature condition as the equation

∂−O+ − ∂+O− + [O−,O+] = 0 (2.3)

for the G-valued components of the flat connection under consideration, imposing the

grading conditions

O− = O−0 + O−L, O+ = O+0 + O+L,

and destroying the residual gauge invariance by the condition

O+0 = 0,

we bring the connection components to the form

O− = Ξ−1∂−Ξ + F−, O+ = Ξ−1F+Ξ, (2.4)

and then derive the equation (2.1) and the relations (2.2) directly from the zero-curvature

condition (2.3), as well as vice versa [16, 2, 17].

It follows from the equality (2.3) that there is a mapping Φ of R2 to G such that

Φ−1∂−Φ = O−, Φ−1∂+Φ = O+. (2.5)

We say in this situation that the connection with the components O− and O+ is generated

by the mapping Φ.

We consider the case where G is a twisted loop group of a complex classical Lie group

G which is defined as follows. Let a be an automorphism of G satisfying the relation

aM = idG for some positive integer M .2 The twisted loop group La,M (G) is formed by the

mappings χ of the unit circle S1 to G satisfying the equality

χ(ǫM p̄) = a(χ(p̄)),

where ǫM = e2πi/M is the Mth principal root of unity. We think the circle S1 as consisting

of complex numbers of modulus one. The group law in La,M (G) is defined pointwise. The

Lie algebra of La,M (G) is the twisted loop Lie algebra LA,M(g), where g is the Lie algebra

of G and A is the automorphism of g corresponding to the automorphism a of G. The Lie

algebra LA,M(g) is formed by the mappings ξ of S1 to g satisfying the equality

ξ(ǫM p̄) = A(ξ(p̄))

with the Lie algebra operation defined pointwise. Note that the relation AM = idg is

satisfied automatically.

In the paper [18] we classified a wide class of the so-called integrable Z-gradations

with finite-dimensional grading subspaces of the twisted loop Lie algebras of the finite-

dimensional complex simple Lie algebras. Namely, we showed that any such Z-gradation of

2Here M is not necessarily the order of the automorphism a, but can be its arbitrary multiple.
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a loop Lie algebra LA,M(g) is conjugated by an isomorphism to the standard Z-gradation

of another loop Lie algebra LA′,M ′(g), where the automorphisms A and A′ differ by an

inner automorphism of g.

Recall that for the standard Z-gradation of the Lie algebra LA,M (g) the grading sub-

spaces are

LA,M(g)k = {ξ = λkx ∈ LA,M(g) | x ∈ g, A(x) = ǫkMx},

where by λ we denote the restriction of the standard coordinate on C to S1.

It is well known that twisted loop Lie algebras defined by automorphisms which differ

by an inner automorphism are isomorphic, and really different twisted loop Lie algebras can

be labeled by the elements of the corresponding outer automorphism group. In particular,

if A is an inner automorphism, the loop Lie algebra LA,M(g) is isomorphic to an untwisted

loop Lie algebra L(g) = Lidg ,1(g). Therefore, in this case a Toda equation associated with

La,M (G) and specified by some choice of a Z-gradation of LA,M(g) is equivalent to a Toda

equation associated with L(G) = LidG,1(G) and specified by the corresponding choice of a

Z-gradation of L(g).

Thus, to describe Toda equations associated with the loop groups La,M (G), where a

is an inner automorphism of G, it suffices to describe the Toda equations associated with

the untwisted loop groups L(G). However, due to simplicity of the standard Z-gradation,

to study Toda equations it is more convenient, instead of using one untwisted loop group

L(G) and different Z-gradations of L(g), to use different twisted loop groups La,M(G) and

the standard Z-gradation of LA,M (g). Similarly, to describe the Toda equations associated

with the loop groups La,M (G), where a is an outer automorphism of G satisfying the

relation aM = idG, it suffices to use only the standard Z-gradation of the loop Lie algebras

LA,M (g). Having all this in mind and slightly abusing terminology, we say that when a is

an outer automorphism of G then a Toda equation associated with La,M (G) is a twisted

loop Toda equation associated with G, and when a is an inner automorphism of G then

a Toda equation associated with La,M(G) is an untwisted loop Toda equation associated

with G.3

The group La,M (G) and its Lie algebra LA,M(g) are infinite-dimensional manifolds.

Nevertheless, using the so-called exponential law [19, 20], it is possible to write the zero-

curvature representation of the Toda equations associated with La,M(G) in terms of finite-

dimensional manifolds. The essence of this useful law can be expressed by the canoni-

cal identification C∞(M, C∞(N ,P)) = C∞(M × N ,P), where M, N and P are finite-

dimensional manifolds, among which N is compact.

The connection components O− and O+ entering the equality (2.3) are mappings of R
2

to the loop Lie algebra LA,M (g). We denote the mappings of R
2×S1 to g, corresponding to

O− and O+ in accordance with the exponential law, by ω− and ω+, and call them also the

connection components. The mapping Φ generating the connection under consideration is

a mapping of R2 to La,M(G). Denoting the respective mapping of R2 × S1 to G by ϕ we

can write

ϕ−1∂−ϕ = ω−, ϕ−1∂+ϕ = ω+, (2.6)

3It is common to omit the word ‘untwisted’.
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which is equivalent to the expressions (2.5). Having in mind that the mapping ϕ uniquely

determines the connection generating mapping Φ, we say that the mapping ϕ also generates

the connection under consideration. We introduce, according to the exponential law, the

smooth mapping γ of R2 × S1 to G respective to Ξ, and smooth mappings of R2 × S1 to g

respective to F− and F+.

Now, explicitly describing the grading subspaces of the standard Z-gradation of the

loop Lie algebra LA,M(g), we find that the subalgebra LA,M(g)0 is isomorphic to the

subalgebra g[0]M of g, and the Lie group La,M (G)0 is isomorphic to the connected Lie

subgroup G0 of G corresponding to the Lie algebra g[0]M . Here g[k]M mean the grading

subspaces of the ZM -gradation of g induced by the automorphism A, and [k]M denotes the

element of the ring ZM corresponding to the integer k. For the connection components ω−

and ω+ we can write the expressions

ω− = γ−1∂−γ + λ−Lc−, ω+ = λLγ−1c+γ, (2.7)

which are equivalent to the equalities (2.4). Here c− and c+ are mappings of R
2 to g−[L]M

and g+[L]M respectively. Hence, the Toda equation (2.1) can be written as

∂+(γ−1∂−γ) = [c−, γ
−1c+γ], (2.8)

and the conditions (2.2) imply that

∂+c− = 0, ∂−c+ = 0. (2.9)

We call an equation of the form (2.8) also a loop Toda equation.

Our classification of loop Toda equations is based on a convenient block-matrix rep-

resentation of the grading subspaces [14, 15] we have implemented. Each element x of the

complex classical Lie algebra g under consideration is treated as a p×p block matrix (xαβ),

where xαβ is an nα × nβ matrix. The sum of the positive integers nα is the size n of the

matrices representing the elements of g. For the case of Toda equations associated with

the loop groups La,M (GLn(C)), where a is an inner automorphism of GLn(C), the integers

nα are arbitrary. For the other cases they should satisfy some restrictions dictated by the

structure of the Lie algebra g.

The mapping γ has the block-diagonal form

γ =




Γ1

Γ2

Γp


 . (2.10)

For each α = 1, . . . , p the mapping Γα is a mapping of R2 to the Lie group GLnα(C). For

the case of Toda equations associated with the loop groups La,M(GLn(C)), where a is an

inner automorphism of GLn(C), the mappings Γα are arbitrary. For the other cases they

satisfy some additional restrictions.
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The mapping c+ has the following block-matrix structure:

c+ =




0 C+1

0

0 C+(p−1)

C+0 0



, (2.11)

where for each α = 1, . . . , p − 1 the mapping C+α is a mapping of R2 to the space of

nα × nα+1 complex matrices, and C+0 is a mapping of R2 to the space of np × n1 complex

matrices. The mapping c− has a similar block-matrix structure:

c− =




0 C−0

C−1 0

0
C−(p−1) 0



, (2.12)

where for each α = 1, . . . , p − 1 the mapping C−α is a mapping of R
2 to the space of

nα+1 × nα complex matrices, and C−0 is a mapping of R
2 to the space of n1 × np complex

matrices. The conditions (2.9) imply

∂+C−α = 0, ∂−C+α = 0, α = 0, 1, . . . , p− 1. (2.13)

For the case of Toda equations associated with the loop groups La,M(GLn(C)), where a is

an inner automorphism of GLn(C), the mappings C±α are arbitrary. For the other cases

they should satisfy some additional restrictions.

The Toda equation (2.8) is equivalent to the following system of equations for the

mappings Γα:

∂+

(
Γ−1

1 ∂−Γ1

)
= −Γ−1

1 C+1Γ2C−1 + C−0Γ
−1
p C+0Γ1,

∂+

(
Γ−1

2 ∂−Γ2

)
= −Γ−1

2 C+2Γ3C−2 + C−1Γ
−1
1 C+1Γ2,

... (2.14)

∂+

(
Γ−1

p−1∂−Γp−1

)
= −Γ−1

p−1C+(p−1)ΓpC−(p−1) +C−(p−2)Γ
−1
p−2C+(p−2)Γp−1,

∂+

(
Γ−1

p ∂−Γp

)
= −Γ−1

p C+0Γ1C−0 + C−(p−1)Γ
−1
p−1C+(p−1)Γp.

It appears that in the case under consideration without any loss of generality we can assume

that the positive integer L, entering the construction of Toda equations, is equal to 1. Note

also that if any of the mappings C+α or C−α is a zero mapping, then the equations (2.14)

are equivalent to a Toda equation associated with a finite-dimensional group or to a set of

two such equations.
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3. Abelian Toda equations associated with loop groups of complex general

linear groups

It can be shown that there are three types of abelian loop Toda equations associated with

the groups GLn(C), see, for example, the paper [3].

3.1 First type: untwisted loop Toda equations

The abelian Toda equations of the first type arise when the automorphism A is defined by

the equality

A(x) = hxh−1, x ∈ gln(C),

where h is a diagonal matrix with the diagonal matrix elements

hkk = ǫn−k+1
n , k = 1, . . . , n. (3.1)

The corresponding automorphism a of GLn(C) is defined by the equality

a(g) = hgh−1, g ∈ GLn(C),

where again h is a diagonal matrix determined by the relation (3.1). Here the integer M

is equal to n, and A is an inner automorphism which generates a Zn-gradation of gln(C).

The block-matrix structure related to this gradation is the matrix structure itself. In other

words, all blocks are of size one by one. The mappings Γα are mappings of R2 to the

Lie group GL1(C) which is isomorphic to the Lie group C
× = C r {0}. The mappings

C±α are just complex functions on R
2. The Toda equations under consideration have the

form (2.14) with p = n.

We have shown in the paper [3] that if the functions C−α and C+α have no zeros then

the Toda equations (2.14) are equivalent to the same equations, but where C−α = C− and

C+α = C+ for some functions C− and C+ which have no zeros. If these functions are real,

then with the help of an appropriate change of the coordinates z− and z+ we can come

to the Toda equations with C±α equal to a nonzero constant m. This system of equations

gives the Toda equations associated with untwisted loop groups of general linear groups.

In the paper [3] we investigated the soliton solutions of the above Toda equations obtained

by two different approaches, the Hirota’s and rational dressing methods, and established

explicit relationships between these methods.

3.2 Second type: twisted loop Toda equations, odd-dimensional case

The abelian Toda equations of the other two types arise when we use outer automorphisms

of gln(C). For the equations of the second type n is odd, and for the equations of the third

type n is even.

Consider first the case of an odd n = 2s − 1, s ≥ 2. In this case an abelian Toda

equation arises when the automorphism A is defined by the equality

A(x) = −h(B−1txB)h−1, (3.2)

– 7 –
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where txmeans the transpose of x, h is a diagonal matrix with the diagonal matrix elements

hkk = ǫn−k+1
2n = ǫ2s−k

4s−2 ,

and B is an n× n matrix of the form

B =




1
1

1
−1

−1



.

The corresponding group automorphism a is defined as

a(g) = h(B−1 tg−1B)h−1. (3.3)

The order M of the automorphism A is 2N = 4s − 2 and the integer p is 2s − 1. The

mapping γ is a diagonal matrix of the form (2.10), where the mappings Γα are mappings

of R
2 to C

×, subject to the constraints

Γ1 = 1, Γ2s−α+1 = Γ−1
α , α = 2, . . . , s.

The mappings C±α in the relations (2.11) and (2.12) are complex functions satisfying the

equality

C±0 = C±1, (3.4)

and for s > 2 the equalities

C±(2s−α) = −C±α, α = 2, . . . , s− 1. (3.5)

Let us choose the mappings Γα, α = 2, . . . , s, as a complete set of mappings parameterizing

the mapping γ. Taking into account the equalities (3.4) and (3.5) we come to a set of s− 1

independent equations equivalent to the Toda equation under consideration. As well as in

the untwisted case, under appropriate conditions the Toda equations under consideration

are equivalent to the same equations, but where

C±0 = C±1 = C±s = m, (3.6)

and

C±α = −C±(2s−α) = m, α = 2, . . . , s− 1. (3.7)

Explicitly, we have the equations

∂+(Γ−1
2 ∂−Γ2) = −m2(Γ−1

2 Γ3 − Γ2),

∂+(Γ−1
3 ∂−Γ3) = −m2(Γ−1

3 Γ4 − Γ−1
2 Γ3),

... (3.8)

∂+(Γ−1
s−1∂−Γs−1) = −m2(Γ−1

s−1Γs − Γ−1
s−2Γs−1),

∂+(Γ−1
s ∂−Γs) = −m2(Γ−2

s − Γ−1
s−1Γs),

– 8 –
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where m is again a nonzero constant, see also the papers [11, 21].

For s = 2 denoting Γ2 by Γ we have the equation

∂+(Γ−1∂−Γ ) = −m2(Γ−2 − Γ ).

Putting Γ = exp(F ) we obtain

∂+∂−F = −m2[exp(−2F ) − exp(F )].

This is the well-known Dodd-Bullough-Mikhailov equation [22, 11], formulated for the first

time by Tzitzéica [23] in geometry of hyperbolic surfaces.

3.3 Third type: twisted loop Toda equations, even-dimensional case

In the case of an even n = 2s, s ≥ 2, to come to an abelian Toda equation we should

use again the Lie algebra automorphism A and the corresponding group automorphism a

defined by the relations (3.2) and (3.3), respectively, where now

B =




1
1

1

1
−1

−1




and h is a diagonal matrix with the diagonal matrix elements

h11 = ǫn−1
2n−2 = ǫ2s−1

4s−2 = −1, hii = ǫn−i+1
2n−2 = ǫ2s−i+1

4s−2 , i = 2, . . . , n.

The order M of the automorphism A is again 2N = 4s−2, and the number p characterizing

the block structure is equal to n− 1 = 2s− 1, n1 = 2, and nα = 1 for α = 2, . . . , 2s− 1.

The mapping Γ1 is a mapping of R
2 to the Lie group SO2(C) which is isomorphic to

C
×. Actually Γ1 is a 2 × 2 complex matrix-valued function satisfying the relation

J−1
2

tΓ1J2 = Γ−1
1 ,

where

J2 =

(
0 1

1 0

)
.

It is easy to show that Γ1 has the form

Γ1 =

(
(Γ1)11 0

0 (Γ1)
−1
11

)
,

where (Γ1)11 is a mapping of R
2 to C

×. The mappings Γα, α = 2, . . . , 2s−1, are mappings

of R
2 to C

× satisfying the relations

Γ2s−α+1 = Γ−1
α .

– 9 –
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The mappings C−1, C+0 are complex 1×2 matrix-valued functions, the mappings C−0,

C+1 are complex 2 × 1 matrix-valued functions. Here we have

C−0 = J−1
2

tC−1, C+0 = tC+1J2. (3.9)

The mappings C±α, α = 2, . . . , p − 1 = 2s − 2, are just complex functions, satisfying for

s > 2 the equalities

C±(2s−α) = −C±α, α = 2, . . . , s− 1. (3.10)

The mappings (Γ1)11 and Γα, α = 2, . . . , s, form a complete set of mappings param-

eterizing the mapping γ. Taking into account the equalities (3.9) and (3.10) we come to

a set of s independent equations equivalent to the Toda equation under consideration. As

well as for the first two types, under appropriate conditions these equations can be reduced

to equations with

C−α = m, C+α = m, α = 2, . . . , s, (3.11)

and

(C−1)11 = (C−1)12 = m/
√

2, (C+1)11 = (C+1)21 = m/
√

2, (3.12)

where m is a nonzero constant. Thus, we come to the equations

∂+(Γ−1
1 ∂−Γ1) = − m2

2
(Γ−1

1 − Γ1)Γ2,

∂+(Γ−1
2 ∂−Γ2) = −m2Γ−1

2 Γ3 +
m2

2
(Γ−1

1 + Γ1)Γ2,

∂+(Γ−1
3 ∂−Γ3) = −m2(Γ−1

3 Γ4 − Γ−1
2 Γ3),

... (3.13)

∂+(Γ−1
s−1∂−Γs−1) = −m2(Γ−1

s−1Γs − Γ−1
s−2Γs−1),

∂+(Γ−1
s ∂−Γs) = −m2(Γ−2

s − Γ−1
s−1Γs),

where, with a slight abuse of notation, we have denoted (Γ1)11 by Γ1.

We also note that all three systems of Toda equations described above can be repre-

sented in standard forms with explicit indication of the Cartan matrices of the correspond-

ing affine Lie algebras of the types A
(1)
n−1, A

(2)
2s−2 and A

(2)
2s−1, respectively, see, for example,

the paper [3].

4. Rational dressing

In this section we apply the method of rational dressing to construct solutions of the

abelian Toda systems associated with the loop groups of the complex general linear groups.

Here we solve the abelian Toda equations of the second and third types which have the

forms (3.8) and (3.13) respectively. In fact, some preliminary relations of the rational

dressing formalism can be introduced on a common basis in application to the both types

of abelian Toda systems.
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Because in the cases under consideration the matrices c− and c+ are commuting, it is

obvious that

γ = In, (4.1)

where In is the n × n unit matrix, is a solution to the Toda equation (2.8). Denote a

mapping of R
2 × S1 to GLn(C), which generates the corresponding connection, by ϕ.

Using the equalities (2.6) and (2.7) and remembering that in our case L = 1, we write

ϕ−1∂−ϕ = λ−1c−, ϕ−1∂+ϕ = λc+, (4.2)

where the matrices c+ and c− having generally the forms (2.11) and (2.12), are speci-

fied by the relations (3.6), (3.7) for the Toda equations of the second type, and by the

relations (3.11), (3.12) for the Toda equations of the third type.

To construct some other solutions to the Toda equations we will look for a mapping

ψ, such that the mapping

ϕ′ = ϕψ (4.3)

would generate a connection satisfying the grading condition

ω− = ω−0 + ω−1, ω+ = ω+0 + ω+1 (4.4)

and the gauge-fixing constraint

ω+0 = 0. (4.5)

For any m̄ ∈ R
2 the mapping ψ̃m defined by the equality ψ̃m(p̄) = ψ(m̄, p̄), p̄ ∈ S1, is

a smooth mapping of S1 to GLn(C). We treat S1 as a subset of the complex plane which,

in turn, will be treated as a subset of the Riemann sphere. Assume that it is possible

to extend analytically each mapping ψ̃m to all of the Riemann sphere. As the result we

obtain a mapping of the direct product of R
2 and the Riemann sphere to GLn(C), which

we also denote by ψ. Suppose that for any m̄ ∈ R
2 the analytic extension of ψ̃m results in a

rational mapping regular at the points 0 and ∞, hence the name rational dressing. Below,

for each point p̄ of the Riemann sphere we denote by ψp the mapping of R
2 to GLn(C)

defined by the equality ψp(m̄) = ψ(m̄, p̄).

Since we deal with the Toda equations described in sections 3.2 and 3.3, for any m̄ ∈ R
2

and p̄ ∈ S1 we should have

ψ(m̄, ǫ2N p̄) = hB−1 tψ−1(m̄, p̄)Bh−1, (4.6)

where h is a block-diagonal matrix described by the relation

hαβ = ǫN−α+1
2N Inαδαβ , α, β = 1, . . . , p,

with n1 = 1 for the Toda equations of the second type, and n1 = 2 for the Toda equations

of the third type, while for all other indices α = 2, . . . , p we always have nα = 1. Note that
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h11 = −In1
. Here we also use the notation

B =




Jn1

1

1
−1

−1




common for the both cases. The equality (4.6) means that for any m̄ ∈ R
2 two rational

mappings coincide on S1, therefore, they must coincide on the entire Riemann sphere.

We define a linear mapping â acting on a mapping χ of the direct product of R
2 and

the Riemann sphere to the algebra Matn(C) of n× n complex matrices as4

âχ(m̄, p̄) = hB−1tχ−1(m̄, ǫ−1
2N p̄)Bh

−1.

The relation (4.6) is equivalent to the equality âψ = ψ. To construct rational mappings

satisfying this relation we will use the following procedure. First, we construct a family of

mappings ψ satisfying the relation â2ψ = ψ, and then select from it the mappings satisfying

the equality âψ = ψ.

It is easy to see that the mapping

ψ =

N∑

k=1

â2kχ (4.7)

satisfies the relation â2ψ = ψ. It is worth to note that â2Nχ = χ. We start with a rational

mapping χ regular at the points 0 and ∞ and having poles at r different nonzero points

µi, i = 1, . . . , r. More specifically, we consider a mapping χ of the form

χ =

(
In +N

r∑

i=1

λ

λ− µi
Pi

)
χ0,

where Pi are some smooth mappings of R
2 to the algebra Matn(C) and χ0 is a mapping

of R2 to the Lie subgroup of GLn(C) formed by the elements g ∈ GLn(C) satisfying the

equality

h2gh−2 = g. (4.8)

With account of the equality

â2χ(m̄, p̄) = h2χ(m̄, ǫ−1
N p̄)h−2

the averaging procedure (4.7) leads to the mapping

ψ =

(
In +

r∑

i=1

N∑

k=1

λ

λ− ǫ2k
2Nµi

h2kPih
−2k

)
ψ0, (4.9)

4Note that below χ is a mapping to the Lie group GLn(C), although to justify the relation (4.7) it is

convenient to think GLn(C) as a subset of Matn(C).
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where ψ0 = Nχ0. We assume that µ2N
i 6= µ2N

j for all i 6= j.

Denote by ψ−1 the mapping of R2 × S1 to GLn(C) defined by the relation

ψ−1(m̄, p̄) = (ψ(m̄, p̄))−1.

Suppose that for any fixed m̄ ∈ R2 the mapping ψ̃−1
m of S1 to GLn(C), defined by the

equality ψ̃−1
m (p̄) = ψ−1(m̄, p̄), can be extended analytically to a mapping of the Riemann

sphere to GLn(C), which we also denote by ψ−1, and as the result we obtain a rational

mapping of the same structure as the mapping ψ,

ψ−1 = ψ−1
0

(
In +

r∑

i=1

N∑

k=1

λ

λ− ǫ2k
2Nνi

h2kQih
−2k

)
, (4.10)

with the pole positions satisfying the conditions νi 6= 0, ν2N
i 6= ν2N

j for all i 6= j, and

additionally νN
i 6= µN

j for any i and j. 5

The mappings ψ and ψ−1 given by the equalities (4.9) and (4.10), respectively, satisfy

the relations â2ψ = ψ and â2ψ−1 = ψ−1. To satisfy the relations âψ = ψ and âψ−1 = ψ−1

we have to assume that the pole positions of the mappings ψ and ψ−1 are necessarily

connected as

νi = µi/ǫ2N , i = 1, . . . , r,

and the matrices Pi and Qi are related as

Qi = h−1B−1 tPiBh, i = 1, . . . , r, (4.11)

By definition, the equality

ψ−1ψ = In

is valid at all points of the direct product of R
2 and S1. Since ψ−1ψ is a rational mapping,

the above equality is valid at all points of the direct product of R
2 and the Riemann

sphere. Hence, the residues of ψ−1ψ at the points νi = µi/ǫ2N and µi should be equal to

zero. Explicitly we have

h−1B−1tPiBh


In +

r∑

j=1

N∑

k=1

µi/ǫ2N

µi/ǫ2N − ǫ2k
2Nµj

h2kPjh
−2k


 = 0, (4.12)


In +

r∑

j=1

N∑

k=1

µi

µi − ǫ2k−1
2N µj

h2k−1B−1tPjBh
−2k+1


Pi = 0. (4.13)

We will discuss later how to satisfy these relations, and now let us consider what connec-

tion is generated by the mapping ϕ′ defined by (4.3) with the mapping ψ possessing the

properties described above.

5Actually, as it will be clear, for the extended mappings ψ and ψ−1 we have ψ−1ψ = In. This justifies

the notation used.
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Using the equality (4.3) and the relations (4.2), we obtain for the components of the

connection generated by ϕ′ the expressions

ω− = ψ−1∂−ψ + λ−1ψ−1c−ψ, (4.14)

ω+ = ψ−1∂+ψ + λψ−1c+ψ. (4.15)

We see that the component ω− is a rational mapping which has simple poles at the points

µi, νi = µi/ǫ2N and zero.6 Similarly, the component ω+ is a rational mapping which has

simple poles at the points µi, νi = µi/ǫ2N and infinity. We are looking for a connection

which satisfies the grading condition (4.4) and the gauge-fixing condition (4.5). The grading

condition in our case is the requirement that for each point of R
2 the component ω− is

rational and has the only simple pole at zero, while the component ω+ is rational and has

the only simple pole at infinity. Hence, we demand that the residues of ω− and ω+ at the

points µi and νi = µi/ǫ2N should vanish.

The residues of ω− and ω+ at the points νi = µi/ǫ2N are equal to zero if and only if

(∂−Qi − ǫ2Nµ
−1
i Qic−)


In +

r∑

j=1

N∑

k=1

µi/ǫ2N

µi/ǫ2N − ǫ2k
2Nµj

h2kPjh
−2k


 = 0, (4.16)

(∂+Qi − ǫ−1
2NµiQic+)


In +

r∑

j=1

N∑

k=1

µi/ǫ2N

µi/ǫ2N − ǫ2k
2Nµj

h2kPjh
−2k


 = 0, (4.17)

respectively, with the equality (4.11) to be taken into account. Similarly, the requirement

of vanishing of the residues at the points µi gives the relations

In +

r∑

j=1

N∑

k=1

µi

µi − ǫ2k−1
2N µj

h2k−1B−1tPjBh
−2k+1


 (∂−Pi + µ−1

i c−Pi) = 0, (4.18)


In +

r∑

j=1

N∑

k=1

µi

µi − ǫ2k−1
2N µj

h2k−1B−1tPjBh
−2k+1


 (∂+Pi + µic+Pi) = 0. (4.19)

To obtain the relations (4.16)–(4.19) we made use of the equalities (4.12), (4.13).

Suppose that we have succeeded in satisfying the relations (4.12), (4.13) and (4.16)–

(4.19). In such a case from the equalities (4.14) and (4.15) it follows that the connection

under consideration satisfies the grading condition.

It follows from the equality (4.15) that

ω+(m̄, 0) = ψ−1
0 (m̄)∂+ψ0(m̄).

Taking into account that ω+0(m̄) = ω+(m̄, 0), we conclude that the gauge-fixing constraint

ω+0 = 0 is equivalent to the relation

∂+ψ0 = 0. (4.20)

6Here and below discussing the holomorphic properties of mappings and functions we assume that the

point of the space R
2 is arbitrary but fixed.
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Assuming that this relation is satisfied, we come to a connection satisfying both the grading

condition and the gauge-fixing condition.

Recall that if a flat connection ω satisfies the grading and gauge-fixing conditions,

then there exist a mapping γ from R2 to G and mappings c− and c+ of R2 to g−1 and g+1,

respectively, such that the representation (2.7) for the components ω− and ω+ is valid.

In general, the mappings c− and c+ parameterizing the connection components may be

different from the mappings c− and c+ which determine the mapping ϕ. Let us denote the

mappings corresponding to the connection under consideration by γ′, c′− and c′+. Thus,

we have

ψ−1∂−ψ + λ−1ψ−1c−ψ = γ′−1∂−γ
′ + λ−1c′−, (4.21)

ψ−1∂+ψ + λψ−1c+ψ = λγ′−1c′+γ
′. (4.22)

Note that ψ∞ is a mapping of R
2 to the Lie subgroup of GLn(C) defined by the rela-

tion (4.8). We recall that this subgroup coincides with G0 and denote ψ∞ by γ. From the

relation (4.21) we obtain the equality

γ′−1∂−γ
′ = γ−1∂−γ.

The same relation (4.21) gives

ψ−1
0 c−ψ0 = c′−.

Impose the condition ψ0 = In, which is consistent with the condition (4.20). Here we have

c′− = c−.

Finally, from the equality (4.22) we obtain

γ′−1c′+γ
′ = γ−1c+γ.

We see that if we impose the condition ψ0 = In, then the components of the connection

under consideration have the form (2.7) where γ = ψ∞.

Thus, to find solutions to the Toda equations under consideration, we can use the

following procedure. We fix 2r complex numbers µi and νi and find matrix-valued functions

Pi and Qi satisfying the relations (4.12), (4.13) and (4.16)–(4.19). With the help of the

relations (4.9), (4.10), assuming that

ψ0 = In,

we construct the mappings ψ and ψ−1. Then, the mapping

γ = ψ∞ (4.23)

satisfies the Toda equation (2.8).

Let us return to the relations (4.12), (4.13). It is easy to see that they are equivalent,

and so, we will use the relation (4.13) for further calculations. We can show that, if we

suppose that the matrix Pi has the maximum rank, then we get the trivial solution of the
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Toda equation given by (4.1). Hence, we will assume that Pi is not of maximum rank. The

simplest case here is given by matrices of rank one which can be represented as

Pi = ui
twi,

where u and w are n-dimensional column vectors. This representation allows writing the

relations (4.13) as

ui +
r∑

j=1

N∑

k=1

µi

µi − ǫ2k−1
2N µj

h2k−1B−1wj(
tujBh

−2k+1ui) = 0. (4.24)

Using the identity
N∑

k=1

zǫ−2kj
2N

z − ǫ2k
2N

= N
zN−|j|N

zN − 1
,

where |j|N is the residue of division of j by N , we can rewrite the equality (4.24) in terms

of the components of ui as follows:

tui,1Jn1
+N

r∑

j=1

(R1)ij
twj,1 = 0,

where ui,1 and wi,1 gather first n1 components of the corresponding n-dimensional column

vectors, so these are in fact n1-dimensional column vectors,7

ui,N+2−k −N

r∑

j=1

(Rk)ijwj,k = 0, k = 2, . . . , s,

and

ui,N+2−k +N

r∑

j=1

(Rk)ijwj,k = 0, k = s+ 1, . . . , p = N.

Here the r × r matrices R1 and Rk are defined as

(R1)ij =
1

µN
i + µN

j

(
µN

i (tui,1Jn1
uj,1) −

s∑

ℓ=2

µ
N−|ℓ−1|N
i µ

|ℓ−1|N
j (ui,N+2−ℓuj,ℓ)

+

N∑

ℓ=s+1

µ
N−|ℓ−1|N
i µ

|ℓ−1|N
j (ui,N+2−ℓuj,ℓ)

)
, (4.25)

(Rk)ij =
1

µN
i + µN

j

(
−µN−|1−k|N

i µ
|1−k|N
j (tui,1Jn1

uj,1)

+

k−1∑

ℓ=2

µ
N−|ℓ−k|N
i µ

|ℓ−k|N
j (ui,N+2−ℓuj,ℓ) −

s∑

ℓ=k

µ
N−|ℓ−k|N
i µ

|ℓ−k|N
j (ui,N+2−ℓuj,ℓ)

+

N∑

ℓ=s+1

µ
N−|ℓ−k|N
i µ

|ℓ−k|N
j (ui,N+2−ℓuj,ℓ)

)
(4.26)

7We remember that either n1 = 1 or n1 = 2.
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for k = 2, . . . , s, and

(Rk)ij =
1

µN
i + µN

j

(
−µN−|1−k|N

i µ
|1−k|N
j (tui,1Jn1

uj,1)

+
s∑

ℓ=2

µ
N−|ℓ−k|N
i µ

|ℓ−k|N
j (ui,N+2−ℓuj,ℓ) −

k−1∑

ℓ=s+1

µ
N−|ℓ−k|N
i µ

|ℓ−k|N
j (ui,N+2−ℓuj,ℓ)

+

N∑

ℓ=k

µ
N−|ℓ−k|N
i µ

|ℓ−k|N
j (ui,N+2−ℓuj,ℓ)

)
(4.27)

for k = s+ 1, . . . , N . Recall that for all cases considered here N = p = 2s− 1.

We use the equations (4.25), (4.26) and (4.27) to express the vectors wi via the vectors

ui,

twi,1 = − 1

N

r∑

j=1

(R−1
1 )ij

tuj,1Jn1
, wi,k =

1

N

r∑

j=1

(R−1
k )ijuj,N+2−k

for k = 2, . . . , s, and

wi,k = − 1

N

r∑

j=1

(R−1
k )ijuj,N+2−k

for k = s+ 1, . . . , N = p. As the result, having expressed the matrices Pi and Qi in terms

of the components of the vectors ui, we find a solution of the relations (4.12) and (4.13).

Further, it follows from the equality (4.24) that, to fulfill also the relations (4.16)–

(4.19), it is sufficient to satisfy the equations

∂−ui = −µ−1
i c−ui, ∂+ui = −µic+ui.

The general solution to these equations is given formally by the expression

ui(z
−, z+) = exp(−µ−1

i c−z
− − µic+z

+)u0
i , (4.28)

where u0
i = ui(0, 0). We will make explicit this formal solution when later constructing

soliton solutions.

Thus, we see that it is possible to satisfy the relations (4.12), (4.13) and (4.16)–(4.19).

This gives us solutions of the Toda equation (2.8), and so, to the equations (3.8) and (3.13)

by specifying the above formal expression of ui for the two corresponding cases. Let us

show that they can be written in a simple determinant form.

Using the equalities (4.23) and (4.9), we get

γ = ψ∞ = In +

r∑

i=1

N∑

k=1

h2kPih
−2k.

For the matrix elements of γ this gives the expression

γkℓ = δkℓ

(
1 +N

r∑

i=1

(Pi)kk

)
= δkℓΓk.
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Hence, we have

Γ1 = In1
−

r∑

i,j=1

ui,1 (R−1
1 )ij

tuj,1Jn1
, Γα = 1 +

r∑

i,j=1

ui,α (R−1
α )ijuj,2s+1−α,

where α = 2, . . . , s, and

Γα = 1 −
r∑

i,j=1

ui,α (R−1
α )ij uj,2s+1−α, α = s+ 1, . . . , 2s − 1.

We assume for convenience that the functions ui,α are defined for arbitrary integral

values of α so that

ui,2s−1+α = ui,α.

By definition the matrices Rα are periodic in the index α. It appears that it is more

appropriate to use quasi-periodic quantities ũα and R̃α defined as

ũα = Mαuα, R̃1 = MR1M
2s, R̃α = M2s+1−αRαM

α,

where α = 2, . . . , 2s − 1; here M is a diagonal r × r matrix given by

Mij = µiδij .

For these quantities we have quasi-periodicity conditions

ũ2s−1+α = M2s−1 ũα, R̃2s = M2s−1 R̃1M
2s−1, R̃2s−1+α = M−2s+1 R̃αM

2s−1.

The expression of the matrix elements of the matrices R̃α through the quasi-periodic quan-

tities ũiα has a remarkably simple form. We have for α = 1

(R̃1)ij =
1

µ2s−1
i + µ2s−1

j


µ2s−1

i (tũi,1Jn1
ũj,1)µ

2s−1
j − µ2s−1

j

s∑

β=2

ũi,2s+1−βũj,β

+µ2s−1
j

2s−1∑

β=s+1

ũi,2s+1−βũj,β


 .

Further, we have for α = 2, . . . , s

(R̃α)ij =
1

µ2s−1
i + µ2s−1

j


−µ2s−1

i (tũi,1Jn1
ũj,1)µ

2s−1
j + µ2s−1

j

α−1∑

β=2

ũi,2s+1−βũj,β

−µ2s−1
i

s∑

β=α

ũi,2s+1−βũj,β + µ2s−1
i

2s−1∑

β=s+1

ũi,2s+1−βũj,β


 ,
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and for α = s+ 1, . . . , 2s − 1

(R̃α)ij =
1

µ2s−1
i + µ2s−1

j


−µ2s−1

i (tũi,1Jn1
ũj,1)µ

2s−1
j + µ2s−1

j

s∑

β=2

ũi,2s+1−βũj,β

−µ2s−1
j

α−1∑

β=s+1

ũi,2s+1−βũj,β + µ2s−1
i

2s−1∑

β=α

ũi,2s+1−βũj,β


 .

Here we used the identity |− k|N = N − 1 − |k − 1|N . The quasi-periodic functions have

the following useful properties:

(R̃α+1)ij = (R̃α)ij + ũi,2s+1−αũj,α, α = 2, . . . , s, (4.29)

(R̃α+1)ij = (R̃α)ij − ũi,2s+1−αũj,α, α = s+ 1, . . . , 2s− 1, (4.30)

and

(R̃1)ij = −(R̃2)ji, (R̃α)ij = (R̃2s+2−α)ji, α = 2, . . . , 2s − 1. (4.31)

In terms of the quasi-periodic quantities, for the n1 ×n1 matrix-valued function Γ1 and for

the functions Γα we have

Γ1 = In1
−

r∑

i,j=1

µ2s−1
i ũi,1 (R̃−1

1 )ij
tũj,1Jn1

, Γα = 1 +

r∑

i,j=1

ũi,α (R̃−1
α )ij ũj,2s+1−α,

for α = 2, . . . , s, and

Γα = 1 −
r∑

i,j=1

ũi,α (R̃−1
α )ij ũj,2s+1−α,

for α = s+ 1, . . . , 2s− 1. The expressions for the functions Γα for α > 1 can be written as

Γα = 1 + tũα R̃
−1
α ũ2s+1−α, α = 2, . . . , s,

and

Γα = 1 − tũα R̃
−1
α ũ2s+1−α, α = s+ 1, . . . , 2s− 1.

Here R̃α is an r × r matrix and ũα is an r-dimensional column vector. We remember that

in the cases under consideration we should have

J−1
n1

tΓ1Jn1
= Γ−1

1 , Γ2s+1−α = Γ−1
α , α = 2, . . . , 2s − 1. (4.32)

To verify these relations we use that

γ−1 = ψ−1
∞ = In +

r∑

i=1

2s−1∑

k=1

h2k (h−1B−1 tPiBh)h
−2k,

therefore we find the following expression of Γ−1
1 in terms of quasi-periodic quantities,

Γ−1
1 = In1

−
r∑

i,j=1

ũi,1µ
2s−1
j (R̃−1

1 )ji
tũj,1Jn1

.
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Comparing now this expression with what we have for Γ1 above, we conclude that the first

relation of equations (4.32) is satisfied.

The expressions just given above allow writing a remarkable determinant representa-

tion for the functions Γα. It can be shown that

Γα =
det(R̃α + ũ2s+1−α

t̃uα)

det R̃α

, α = 2, . . . , s,

and

Γα =
det(R̃α − ũ2s+1−α

tũα)

det R̃α

, α = s+ 1, . . . , 2s− 1.

Using the properties (4.29) and (4.30) we can see

Γα =
det R̃α+1

det R̃α

, α = 2, . . . , s, s+ 1, . . . , 2s − 1.

For these functions we can also easily demonstrate that

Γ2s+1−α =
det R̃2s+2−α

det R̃2s+1−α

=
det(tR̃α)

det(tR̃α+1)
=

det R̃α

det R̃α+1

= Γ−1
α ,

using for this purpose the relations (4.30). Hence all equations (4.32) are fulfilled.

We remember also that for the case n1 = 1 corresponding to the second type of abelian

twisted loop Toda equations considered here (n = p = 2s − 1), we have I1 = J1 = 1, and

so, we can write for the function Γ1 the expression

Γ1 = 1 − tũ1M
2s−1 R̃−1

1 ũ1,

where ũ1 is also an r-dimensional column vector. It can be shown that

Γ1 =
det(R̃1 − ũ1

tu1M
2s−1)

det R̃1

,

We obtain from the expressions of R̃1 and R̃2 directly that

(R̃1)ijµ
−N
j = tũi,1Jn1

ũj,1 + µ−N
i (R̃2)ij ,

and so, for n1 = 1 we can write

M−2s+1 R̃2 + ũ1
tũ1 = R̃1M

−2s+1.

Using this relation in the above expression for Γ1 as the ratio of determinants, we easily

derive

Γ1 =
det R̃2

det R̃1

. (4.33)

But we have from the equality (4.31) that

R̃1 = −tR̃2,

and so, for n1 = 1 the expression (4.33) gives

Γ1 = (−1)r.
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5. Soliton solutions

5.1 Odd-dimensional case

Here we consider the case of n = p = N = 2s − 1. It means also that we have n1 = 1.

The eigenvectors of the matrices tc−, tc+, c− and c+ are n-dimensional column vectors Ψρ,

ρ = 1, . . . , 2s− 1, satisfying the relations

tc−Ψρ = mǫs+2ρ
2N Ψρ,

tc+Ψρ = mǫ−s−2ρ
2N Ψρ, c−Ψρ = mǫ−s−2ρ

2N Ψρ, c+Ψρ = mǫs+2ρ
2N Ψρ,

where the 2s− 1 components of Ψρ are defined as

(Ψρ)α = ǫ
α(s+2ρ)
2N , α = 1, . . . , s,

(Ψρ)α = (−1)α−s−1 ǫ
α(s+2ρ)
2N , α = s+ 1, . . . , 2s − 1.

Consequently, we can give a concrete expression to the formal solution (4.28) as

ui,α =

2s−1∑

ρ=1

ciρ ǫ
α(s+2ρ)
2N e−Zρ(µi), α = 1, . . . , s

ui,α =

2s−1∑

ρ=1

ciρ (−1)α−s−1 ǫ
α(s+2ρ)
2N e−Zρ(µi), α = s+ 1, . . . , 2s − 1,

where ciρ are arbitrary constants and we have introduced the notation

Zρ(µi) = m(ǫ−s−2ρ
2N µ−1

i z− + ǫs+2ρ
2N µiz

+).

Then, after some calculation using, in particular, properties of ǫ2N , we write for the matrix

elements of R̃α for α ≥ 2:

(R̃α)ij = (−1)αµ2s+1−α
i µα

j

2s−1∑

ρ,σ=1

ciρ cjσ
ǫ
4ρ+1−2(ρ−σ)α
2N

1 + µjµ
−1
i ǫ

−2(ρ−σ)
2N

e−Zρ(µi)−Zσ(µj). (5.1)

It is clear that to obtain nontrivial solutions to the Toda equations we should require that

at least two coefficients ciρ for any i = 1, . . . , r are different from zero. In this, we construct

solutions depending on only r combinations of independent variables z− and z+. We denote

such nonzero constants by CJi
and CKi

. The expression for the matrix elements (5.1) takes

then the form

(R̃α)ij = (−1)αµ2s+1−α
i ǫ4Ji+1−2αJi

2N CJi
e−ZJi

(µi) (R̃′
α)ijµ

α
j CJj

ǫ
2αJj

2N e
−ZJj

(µj),

where

(R̃′
α)ij =

1

1 + µjµ
−1
i ǫ

2(Jj−Ji)
2N

+
CKj

CJj

ǫ
2(Kj−Jj)α
2N

1 + µjµ
−1
i ǫ

2(Kj−Ji)
2N

e
ZJj

(µj )−ZKj
(µj )

(5.2)

+
CKi

CJi

ǫ
4(Ki−Ji)−2(Ki−Ji)α
2N

1 + µjµ
−1
i ǫ

2(Jj−Ki)
2N

eZJi
(µi)−ZKi

(µi)

+
CKi

CKj

CJi
CJj

ǫ
4(Ki−Ji)−2(Ki−Ji+Kj−Jj)α
2N

1 + µjµ
−1
i ǫ

2(Kj−Ki)
2N

e
ZJi

(µi)−ZKi
(µi)+ZJj

(µj)−ZKj
(µj )

.
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It is easy to show that

Γα =
det R̃α+1

det R̃α

= (−1)r
det R̃′

α+1

det R̃′
α

.

Recalling also that Γ1 = (−1)r, we see that we can take R̃′
α instead of R̃α to construct

solutions of the Toda equations using for that the above determinant representation.

Defining a new set of parameters

ρi = Ji −Ki, θρi
=

πρi

2s− 1
, κρi

= −i(ǫρi

2N − ǫ−ρi

2N ) = 2 sin θρi
, (5.3)

exp δi =
CKi

CJi

, ζi = iǫs+Ji+Ki

2N µi, fi = ǫρi

2N ζi, f̃i = ǫ−ρi

2N ζi,

and introducing the notation

Dij(f, g) =
fi

fi + gj
,

we can rewrite the expression for R̃′
α as

(R̃′
α)ij = Dij(f, f) + ǫ

2ρi(α−1)
2N eZi(ζ)+δi−2iθρiDij(f̃ , f) +Dij(f, f̃)eZj(ζ)+δj−2iθρj ǫ

−2ρj(α−1)
2N

+ǫ
2ρi(α−1)
2N eZi(ζ)+δi−2iθρiDij(f̃ , f̃)eZj(ζ)+δj−2iθρj ǫ

−2ρj(α−1)
2N , (5.4)

where now the dependence on independent variables is given through

Zi(ζ) = mκρi
(ζ−1

i z− + ζiz
+).

In fact, it appears that it is appropriate to use the matrices Tα = D−1(f, f)R̃′
α and write

the solutions under construction as

Γα =
detTα+1

detTα
.

The problem of constructing multi-soliton solutions for the Toda equations (3.8) is thus

reduced to calculating the determinant of the r × r matrix Tα.

To obtain a one-soliton solution we set r = 1. In this case Tα are ordinary functions,

and we easily find

Tα+1 = 1 + 2
cos(2α − 1)θρ

cos θρ
eZ(ζ)+δ−2iθρ + e2(Z(ζ)+δ−2iθρ). (5.5)

Setting r = 2 we work out the determinant of the respective 2 × 2 matrix explicitly given

above and thus obtain for the two-soliton solution the expression

detTα+1 = 1 + 2
cos(2α − 1)θρ1

cos θρ1

e
eZ1 + 2

cos(2α − 1)θρ2

cos θρ2

e
eZ2 + e2 eZ1 + e2 eZ2

+

(
2η+

12

cos(2α− 1)(θρ1
− θρ2

)

cos θρ1
cos θρ2

+ 2η−12
cos(2α− 1)(θρ1

+ θρ2
)

cos θρ1
cos θρ2

)
e

eZ1+ eZ2

+2η+
12η

−
12

(
cos(2α − 1)θρ1

cos θρ1

e
eZ1+2 eZ2 +

cos(2α − 1)θρ2

cos θρ2

e2 eZ1+ eZ2

)

+
(
η+
12η

−
12

)2
e2( eZ1+ eZ2), (5.6)
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with the ‘soliton interaction factors’

η+
12 =

(ζ1ζ
−1
2 + ζ2ζ

−1
1 ) + 2 cos(θρ1

+ θρ2
)

(ζ1ζ
−1
2 + ζ2ζ

−1
1 ) + 2 cos(θρ1

− θρ2
)
, η−12 =

(ζ1ζ
−1
2 + ζ2ζ

−1
1 ) − 2 cos(θρ1

− θρ2
)

(ζ1ζ
−1
2 + ζ2ζ

−1
1 ) − 2 cos(θρ1

+ θρ2
)
,

and the constant parameters

eδ′
1 =

(f1 + f2)(f̃1 − f2)

(f1 − f2)(f̃1 + f2)
, eδ′

2 =
(f1 + f2)(f1 − f̃2)

(f1 − f2)(f1 + f̃2)

giving rise to a shift in the exponents as

Z̃i = Zi(ζ) + δi + δ′i − 2iθρi
.

It can also be shown that performing the corresponding change of variables as suggested

in the paper [3], one can reach the same result along the lines of the Hirota’s approach.

Here, the quantities detTα+1 constructed by means of the rational dressing formalism, will

coincide with the Hirota’s τ -functions τα, see the paper [3] where such correspondence was

established for the untwisted case.

Now, considering s = 2, so that N = 3, we describe the Dodd-Bullough-Mikhailov

equation from section 3.2. Here we have Γ1 = (−1)r, Γ3 = Γ−1
2 , and so, the mapping γ is

parameterized by the only nontrivial function Γ2, denoted here by Γ . The corresponding

soliton solutions can easily be derived from the relations (5.5) and (5.6) putting α = 2 and

α = 3 in order and taking into account that θρ = πρ/3. Remember here that ρ = J −K,

where J and K take values 1, 2 or 3 only. In particular, it is easy to see that the one-soliton

solution can be written as

Γ =
1 − 4eZ(ζ)+δ−2iθρ + e2(Z(ζ)+δ−2iθρ)

(1 + eZ(ζ)+δ−2iθρ)2
.

For the two-soliton solution, we should respectively simplify the expression (5.6). The cor-

responding expressions reproduce the one- and two-soliton solutions of the Dodd-Bullough-

Mikhailov equation obtained in the paper [13] by means of the Hirota’s method.

5.2 Even-dimensional case

Here we consider the case of n = 2s, with p = N = 2s− 1. It means also that now we have

n1 = 2. The eigenvectors of the matrices tc−, tc+, c− and c+ are 2s-dimensional column

vectors Ψρ, ρ = 1, . . . , 2s − 1, satisfying the relations

tc−Ψρ = mǫs+2ρ
2N Ψρ,

tc+Ψρ = mǫ−s−2ρ
2N Ψρ, c−Ψρ = mǫ−s−2ρ

2N Ψρ, c+Ψρ = mǫs+2ρ
2N Ψρ,

where we define the 2s components of Ψρ as

(Ψρ)0 = (Ψρ)1 = ǫ
α(s+2ρ)
2N , (Ψρ)α =

√
2ǫ

α(s+2ρ)
2N , α = 2, . . . , s

and

(Ψρ)α = (−1)α−s−1
√

2ǫ
α(s+2ρ)
2N , α = s+ 1, . . . , 2s − 1.
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Besides, respective to the only zero eigenvalue, c−, c+ and their transposed matrices have

one and the same null-vector that can be defined as tΨ0 = (1,−1, 0, . . . , 0).

Consequently, the solution (4.28) takes the form

(ui,1)0 = ci0 +

2s−1∑

ρ=1

ciρ ǫ
s+2ρ
2N e−Zρ(µi), (ui,1)1 = −ci0 +

2s−1∑

ρ=1

ciρ ǫ
s+2ρ
2N e−Zρ(µi),

and

ui,α =

2s−1∑

ρ=1

ciρ
√

2ǫ
α(s+2ρ)
2N e−Zρ(µi), α = 2, . . . , s

ui,α =

2s−1∑

ρ=1

ciρ (−1)α−s−1
√

2ǫ
α(s+2ρ)
2N e−Zρ(µi), α = s+ 1, . . . , 2s− 1,

where ci0 and ciρ are arbitrary constants and, as usual, we have introduced the notation

Zρ(µi) = m(ǫ−s−2ρ
2N µ−1

i z− + ǫs+2ρ
2N µiz

+).

Note that ui,1 is now a 2-dimensional column vector with the components (ui,1)0 and (ui,1)1
given in order.

For the quasi-periodic quantities R̃α introduced in section 4 we obtain the expressions

(R̃1)ij = −
2µ2s

i µ
2s
j

µ2s−1
i + µ2s−1

j

ci0cj0

+ 2µiµ
2s
j

2s−1∑

ρ,σ=1

ciρ cjσ
ǫ
2(s+ρ+σ)
2N

1 + µjµ
−1
i ǫ

−2(ρ−σ)
2N

e−Zρ(µi)−Zσ(µj ),

(R̃α)ij =
2µ2s

i µ
2s
j

µ2s−1
i + µ2s−1

j

ci0cj0

+ 2(−1)αµ2s+1−α
i µα

j

2s−1∑

ρ,σ=1

ciρ cjσ
ǫ
4ρ+1−2(ρ−σ)α
2N

1 + µjµ
−1
i ǫ

−2(ρ−σ)
2N

e−Zρ(µi)−Zσ(µj),

that are to be used in the determinant representation derived earlier for constructing the

soliton solutions.

It is easy to see that if we set here ci0 = 0, then we come to the same solutions given

for n = 2s − 1 by the relations (5.4)–(5.6), with the only unessential difference that for

n = 2s the rational dressing gives Γ1 = (−1)rJr
2 . Therefore, to obtain new solutions we

consider that in what follows ci0 does not vanish.

To construct such new simplest soliton solutions we thus assume that for each value

of the index i only one arbitrary constant ciρ, apart from the ci0, is different from zero.

To keep up with the notations used in the preceding section, we denote such nonvanishing

coefficients by CIi
and C0i

. Then we can write for the above r × r matrices R̃1 and R̃α

(R̃1)ij = −2µiC0i
(R̃′

1)ijC0j
µ2s

j , (R̃α)ij = 2µiC0i
(R̃′

α)ijC0j
µ2s

j ,
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where R̃′
1 and R̃′

α can be represented as

(R̃′
1)ij = Dij(ζ

2s−1, ζ2s−1) − e−Z′

iDij(ζ, ζ)e
−Z′

j ,

(R̃′
α)ij = Dij(ζ

2s−1, ζ2s−1) − (−1)α ζ2s−α
i e−Z′

iDij(ζ, ζ)e
−Z′

j ζα−2s
j . (5.7)

Here we use the same notation for the matrices D(f, g) introduced in the preceding sec-

tion 5.1, and besides,

Z ′
i = Zi(ζ) − δi − iθs+2Ii

, Zi(ζ) = m(ζ−1
i z− + ζiz

+),

with the set of parameters

ζi = ǫs+2Ii

2N µi, eδi =
CIi

C0i

, θs+2Ii
=
π(s+ 2Ii)

2s− 1
.

We also rewrite the explicit forms of the components of the 2-dimensional column vector

ũi,1 in terms of the notations introduced above. We have

(ũi,1)0 = µiC0i
(1 + exp(−Z ′

i)), (ũi,1)1 = −µiC0i
(1 − exp(−Z ′

i)).

Hence, according to the general relations derived in section 4, we can take the matrices Tα =

D−1(ζ2s−1, ζ2s−1)R̃′
α instead of R̃α and write for the solutions of the Toda equations (3.13)

the following expressions:

Γ1 = I2 +

r∑

i,j=1

vi (R̃
′−1
1 )ij

tvj J2,

where vi are 2-dimensional column vectors with the components

vi,0 =
1√
2
(1 + exp (−Z ′

i)), vi,1 = − 1√
2
(1 − exp (−Z ′

i)),

and

Γα =
detTα+1

detTα
, α = 2, . . . , s.

To obtain a one-soliton solution of the type under consideration, we put r = 1, for

which Tα are ordinary functions. It is easy to show that in this case we have

Γ1 =

(
0 Γ

Γ−1 0

)
, Γ =

1 + exp(−Z ′)

1 − exp(−Z ′)
,

and

Γα =
1 + (−1)α exp(−2Z ′)

1 − (−1)α exp(−2Z ′)
, α = 2, . . . , s.

Note that apart from the relation Γ2s+1−α = Γ−1
α here we also have Γα+1 = Γ−1

α . It is clear

that to have a mapping γ belonging to G0 we should take Γ1J2 instead of the above Γ1.

Setting r = 2 we work out the corresponding 2 × 2 matrices and thus obtain new

two-soliton solutions to (3.13). The calculations lead to the expressions

Γ1 =

(
Γ 0

0 Γ−1

)
, Γ =

1 + e−
eZ1 − e−

eZ2 − η12e−( eZ1+ eZ2)

1 − e− eZ1 + e− eZ2 − η12e−( eZ1+ eZ2)
,

– 25 –



J
H
E
P
1
2
(
2
0
0
8
)
0
4
8

where the ‘soliton interaction factor’ is now

η12 =
ζ1 − ζ2
ζ1 + ζ2

· ζ
2s−1
1 − ζ2s−1

2

ζ2s−1
1 + ζ2s−1

2

,

and we have introduced a new parameter δ′ defined by

eδ′ =
ζ2s−1
1 + ζ2s−1

2

ζ2s−1
1 − ζ2s−1

2

and producing a shift in the exponents,

Z̃i = Z ′
i − δ′ = Zi(ζ) − δi − δ′ − iθs+2Ii

.

We also have

detTα+1 = 1 + (−1)α (e−2 eZ1 + e−2 eZ2) (5.8)

−4(−1)α
ζα
1 ζ

2s−α
2 + ζα

2 ζ
2s−α
1

(ζ1 + ζ2)(ζ
2s−1
1 + ζ2s−1

2 )
e−( eZ1+ eZ2) + η2

12e−2( eZ1+ eZ2).

Note finally that under the permutation of the parameters ζ1 and ζ2 the function Γ trans-

forms into Γ−1, thus Γ1 goes to Γ−1
1 , while Γα for the other values of α all stay invariant.

6. Conclusion

We have considered the abelian Toda systems associated with the loop groups of the com-

plex general linear groups. Using the method of rational dressing, along the lines of [3], we

have constructed soliton solutions to these equations in the twisted cases, that is, when the

gradations are generated by outer automorphisms of the structure Lie algebras. In fact,

we have constructed solutions which obviously form wider classes than the solitons. The

soliton solutions can be obtained from the more general solutions constructed by means

of the rational dressing by setting the initial data of the problems under consideration to

specific values. And in this sense the soliton solutions that can be found also by the Hi-

rota’s approach, form a subset of the solutions constructed by the rational dressing method.

We have demonstrated this, in particular, by the solutions to the famous Dodd-Bullough-

Mikhailov equation.

Our consideration can be generalized to Toda systems connected with other loop

groups, such as twisted and untwisted loop groups of the complex orthogonal and symplec-

tic groups. It is worth noting that, as we have already observed here, the pole positions

of the dressing meromorphic mappings and their inverse ones turn out to be bound up

with each other because of the specific structure of the outer automorphism leading to

the twisted cases. This circumstance made part of the formulae more intricate than in

the untwisted general linear case considered in the preceding paper [3]. Actually, similar

problems of coinciding pole positions arise also due to the specific group conditions. We

will address to this problem and present our respective results in some future publications.
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Note finally that Toda systems based on twisted affine Kac-Moody algebras were ap-

proached in [24] by means of vertex operators, by constructing twisted algebras from un-

twisted ones with the help of relevant folding techniques. Although the constructions of [24]

do not present explicit forms of the solutions, however, it is not difficult to see that they

reproduce the soliton solutions that can be obtained by the Hirota’s approach. It should

be an interesting problem to make a comparative analysis, from a group-algebraic point of

view, of the rational dressing and vertex operators methods.
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[23] G. Tzitzéica, Sur une nouvelle classe de surfaces, Rend. Circ. Mat. Palermo 25 (1908) 180.

[24] M.A.C. Kneipp and D.I. Olive, Solitons and vertex operators in twisted affine Toda field

theories, Commun. Math. Phys. 177 (1996) 561 [hep-th/9404030].

– 28 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB626%2C463
http://arxiv.org/abs/hep-th/0105078
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB800%2C409
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB800%2C409
http://arxiv.org/abs/0708.1342
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB782%2C241
http://arxiv.org/abs/math-ph/0612054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C154%2C385
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C154%2C451
http://arxiv.org/abs/0705.2681
http://arxiv.org/abs/hep-th/9311167
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C112%2C254
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C112%2C254
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C112%2C999
http://arxiv.org/abs/hep-th/9609031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C267%2C587
http://arxiv.org/abs/math-ph/0504038
http://arxiv.org/abs/math.DG/9202206
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C79%2C473
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRSLA%2CA352%2C481
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C177%2C561
http://arxiv.org/abs/hep-th/9404030

